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The static perfect fluid in Brans-Dicke theory with spherical symmetry and 
conformal flatness leads to a differential equation in terms of the scalar field 
only. We obtain a unique exact solution for the case p=eo,  but density and 
pressure are singular at the center. We further consider the metric corresponding 
to a static nonrotating space-time with two mutually orthogonal spacelike Killing 
vectors in Brans-Dicke theory. We obtain a differential equation involving only 
the scalar field for the equation of state p = ep. The general solution is found as a 
transcendental function. Finally, we generalize a theorem given by Bronnikov 
and Kovalchuk (1979) for perfect fluid in Einstein's theory. 

1. I N T R O D U C T I O N  

Static perfect fluid distributions with high symmetries such as spherical, 
cylindrical, and planar symmetries are widely discussed in the literature 
(Schwarzschild, 1916; Tolman, 1939; Marder, 1958; Misner and Zapolsky, 
1964; Evans, 1977; Bronnikov and Kovalchuk, 1979; and references therein). 
However, the corresponding problem in Brans-Dicke  theory still lacks 
thorough investigations, although it deserves attention because Brans-Dicke  
theory is perhaps the best motivated scalar tensor theory of gravitation in 
spite of some recent experiments giving evidences against this theory. 

In Sections 2, 3, and 4 we discuss spherically symmetric solutions. We 
arrive at a complicated nonlinear differential equation involving the only 
scalar field variable for the most  general conformally flat perfect fluid 
distribution in Brans-Dicke  theory. Only in a special case of an equation of 
state p = eO we could give the exact solution, which is unique but singular in 
the sense that the density and pressure are infinitely large at the center. This 
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solution is exactly one of the special cases of the singular solution given 
previously by Bruckman and Kazes (1979) showing that their solution 
includes the conformally flat solution. 

In Sections 5 and 6 we consider a metric corresponding to a static 
nonrotating space-time with two mutually orthogonal spacelike Kilting 
vectors. This metric may be interpreted to represent cylindrical, toroidal, 
planar, or pseudoplanar symmetry depending on the behavior of the coordi- 
nates. We obtain the most general nonlinear differential equation involving 
only the scalar field variable for a perfect fluid with the isothermal equation 
of state p=ep, e being a constant. The general solution was obtained as a 
transcendental function and explicit solutions can only be obtained in 
certain special cases. It has also been proved that there cannot exist a 
perfect fluid distribution satisfying an equation of state p=ep and also 
having planar or pseudoplanar symmetry along with additional mirror 
symmetry. This may be said to be the generalization of the corresponding 
theorem of Bronnikov and Kovalchuk (1979) for a perfect fluid in Einstein's 
theory. 

Finally in Section 7 we present the explicit solutions of Einstein- 
Brans-Dicke equations in empty space for the line element given in section 
5. The static vacuum solutions for spherical symmetry were already given by 
Brans (1962). 

2. CONFORMALLY FLAT STATIC SPHERICALLY 
SYMMETRIC METRIC 

The general static spherically symmetric metric may be written as 

ds 2 = e2~ [ - V2( r )dr 2 + dr 2 + r 2 d a  2] (1) 

In order that a four-dimensional space-time be conformally flat all the 
components of the associated Weyl tensor (Eisenhart, 1966), 

C~v~ -R~v~ +3( 8vR8~ --8~Rsv +g~pRv --g~vR~)+( R/6)(  8~gsv -- 8v gs~ ) 

(2) 

must vanish. If this condition is satisfied for 

ds  2 = _ V 2 (  r ) d t  2 -}-dr 2 + r 2 d ~  2 (3) 

then (1) is consequently conformally flat. Greek indices range from 0, 1,2, 3 
and latin indices 1,2, 3. 
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Substituting the metric given by (3) into (2), we obtain the components 
of the Weyl tensor which do not vanish identically, 

Chook = - �89 VV;h ~ + ~ghkVgabV;ab =0  (4) 

1 
Chijk = ~ [ ghjV;ik --ghkV;ij +g~kV;hj --gijV;hk] 

a b  

+ g V;a~ (ghkgij--ghjgik) =0 (5) 3V 

Substituting equation (4) into (5) we see that the components (5) are 
identically zero; then we are left only with equation (4), which may be split 
into 

1 _ a b t z  - -  t z  . ~g V;a b -  v;hk, f o r h = k  

V;hl, =0,  for h = k  (6) 

The system of equations (6) is reducible to 

- 31( V' '+ 2V' ) r = V" = - -  V'r 

where the prime 
solution of (7) is 

(7) 

means differentiation with respect to r. The general 

V=ar  2 +b (8) 

where a and b are constants of integration. Now we can write the general 
spherically symmetric conformally flat metric as 

ds 2 = e2~ ar 2 + b )2 dt 2 + d r  2 _}_ F 2  da2] (9) 

3. PERFECT FLUID AND BRANS-DICKE THEORY IN A 
SPHERICALLY SYMMETRIC CONFORMALLY FLAT 

SPACE-TIME 

Brans-Dicke field equations with perfect fluid are 

k _ ,o ( , , . r  1 1 
G f f = - ~ T f  -~  ~3#q~,y~? ,~ )--~(d?;;~-3ff73~) (10) 

k 
Vlq,= 3 +2w r." (11) 
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is the scalar field and T.~ is t h e e n e r g y - m o m e n t u m  tensor for a perfect 
fluid, so that 

T~ = (# +p) u~ua +pg~/~ (12) 

where p is the mass dengity, p is the pressure, and u~ is the 4-velocity 
satisfying 

u o . ~  (13) 

For the static case u i = 0. 
By considering the space-time (9), the field equations (10) become 

-2~ + _ _ +  + b__U~ar~ ] G I = - e  30,2 4aro'  40' 4a 
b + a r  2 r 

[ 0"+o,;]§ (,4) k 
= -- -~ p + e - 2~ -2 --~ d? 

~=~-----e ~~ ~~ ~+a,~4ar~ ~+ar~4--~a ] 
_ k + -2~ ~ +0')  D ,  (15) - - - - ~ p  e [ T ( ~ ) 2 - - (  1 ~ ] + ' - ~ - -  

2~ + ] G 2 = - e  2 0 . + 0 ,  2 4e '  
r 

- 2 .  ~ [ 2ar ,\  q~ D,~ (16) = 0+e ~- I -l~--+-~a~ ~+~ )-+- + T -  

and 01), 

i_l~b=e_2O[d/,+~b,(2a,+ 2 + b + a r  22 j f - - r  )] 

_ k ( 3 p - p )  (17) 
3 + 2 ~  

A further equation that we can build which may be helpful, however not 
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independent, is the trace of (10) which gives 

[ 
a _  -2a / +60,2 + G~ -- --e 6o" 

t 
12o'_~r 12a(ro '+l )  2 

= - k T " + e - 2 ~ 1 6 2  ~ ~-- (18) 

The above system of equations has four unknowns, o, q~, O, and p, and four 
independent equations, (14)-(17), which means that in principle it may be 
soluble. 

Subtracting equation (14) from (15) we obtain 

__Ot,+Ot2+ OI 02(~ '~  2 1 ~' e~' 1 CO" 
r - - 2 - \ ~ - )  + ~ r - ~ - - + ~  2 ~ =0 (19) 

Substituting (17) into (18), instead of (16), we have 

60; t 
3o"+3o '2 + + 

r 

6a( ro' + 1) 
b+ ar 2 

[1 /~b ' )  2 dp" ~ ' (  2 2ar )] 
~ ~/-~- 2 o ' + -  + - -  =0 (20) ,/, r b+ar 2 

Now considering the transformations 

Or=Or 

q,' 

( 2 1 )  

(22) 

and applying them in (19) and (20) we obtain 

1 , 1 ~ + 1  2 
(23) 

and 

2 ~ ~ , 

a , = _ a 2  +a  2r b+ar + - ~ o ~  ) + - ~  

(2.,+2 20 
+r -3 r 3 b+ar 2 ] b+ar 2 

(24) 
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We can build one differential equation only in terms of ~ from the two 
Riccati equations for a, (23) and (24). Thus the general spherically symmet- 
ric conformally flat solution for a perfect fluid in Brans-Dicke theory is 
uniquely given by (23) and (24), and in the following section we will 
consider a special class of such solutions. 

4. SOLUTION WITH AN EQUATION OF STATE 

One particular solution of the system (23), (24) may be found by 
assuming the equation of state 

p = e o  (25) 

where e is a positive constant. It has been proved (Banerjee and 
Bhattacharya, 1979) that in this case 

q~= A(  goo )C/2= AeCa( ar 2 + b ) c (26) 

where A and c are constants. Substituting (26) into (23) and (24) by taking 
into consideration the transformations (21) and (22) we obtain 

(_ ,)(,+i o+i)( 
1 + 2 ~,=  g,2 + 2 f +  - + ~ (27) 
C C 2 C 2 C 

1 to 1 2 o ~ + w  2 1 f 

where 

2ar 
f =  ar 2 + b  (29) 

Considering first solutions for a--0, which implies f =  0, then ~ that satisfies 
(27) and (28) is 

(30) 
r 

where 

U---- 1/c--,o/3 (31) 
- 1 / c  2 + 2 w / 3 c + w / 6  
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and the relation between c and ~0 is 

c 3 �9 c 2 - - 6  2 ] c  3 6 : 0  (32) 

Since 

3 e - 1  
c =  (2~o+3)+(r 1)(3e-1)  

(Banerjee and Bhattacharya, 1979) the equation (32) actually determines a 
relationship between e and ~0. The second situation is for a v a 0, which 
implies fva0; then the solution of equation (27) is 

~ = - - M f  (33) 

where 

1/c+ 1/2 __ (34) 
M= 1/c2 + 1 / c - ( r  1)/2 

Now substituting (33) into (28) we obtain the relation 

r 
(35) 

where B is a constant given by 

3M-2/ (1 /c-o~/3)  
B = (36) 

2 M -  1/(1/c--oo/3) + M2/N 

and where N is given by (31). 
Comparing equation (35) with the definition of f given in (29) we see 

that (35) can only be true if b=0.  It is possible to show that even in this case 
the line dement  (9) for a v ~ 0 and b = 0 may, by a coordinate transformation 
like ?=l/ar, be written in the form dsZ---e2~ 
Hence we conclude that both situations, f =  0 and fv a 0, are equivalent. We 
can write without loss of generality for our problem the line element (9) as 

ds 2 =e2a( r ) [  - - d t  2 q-dF 2 q - r  2 d ~  2 ] (37) 

Using equations (26) and (30) we have the solutions for the conformal 
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factor and the scalar field 

e2~ 2N/c (38) 

~=C2 rN (39) 

where c I and c 2 are integration constants. 
So finally we have arrived at the result that the metric (38) along with 

(39) is the only conformally flat solution in Brans-Dicke theory for a 
perfect fluid which is consistent with an equation of state p = e p .  However 
the solution is singular, the mass density and pressure attain an infinitely 
large value at the center of the sphere located at ? = r e  ~ =0.  

At this end it is interesting to note that our solution (38) given in 
isotropic coordinates can be transformed in the usual curvature coordinate 
by a simple coordinate transformation 

?=  r e  o = cl  r ( l  + N/c)  (40) 

and the line element can be written in the form 

ds 2 = __ (C 1 )2/(1 + N/c)( ~ )2N/c/(I + N/c) dt 2 + 
(1 + N / c )  2 

dr2  q- r2  d ~  2 (41) 

This is exactly of the same form as given in the paper of Bruckman and 
Kazes (1977). In fact the solution given in their paper is conformally flat if 
the power of ? in g0o is related to g11, which is a constant quantity, exactly in 
the same way as in (41), and this in turn implies a specific relationship 
between e and w. 

5. STATIC CYLINDRICAL AND PLANE SYMMETRIC 
SOLUTIONS 

We consider a static space-time possessing two spacelike Killing vectors 
which are mutually orthogonal and also orthogonal to the timelike Killing 
vector. The metric can then be chosen as 

d s  2 = - e2r(X) d t  2 + e  2x~x) d x  2 q- e2~*(X) d ~  2 q- e2B(X) d ~  2 (42) 

The above metric corresponds to cylindrical symmetry if ~ and ~ represent 
the azimuthal and longitudinal coordinates, respectively, so that ~ E (0, 2 ~r) 
and ~/E ( - m ,  ~) .  If both ~ and ~ are angular coordinates, it represents 
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toroidal symmetry, whereas if both ~ and 7/ represent longitudinal coordi- 
nates [( E ( -  m, + m); ~/~ ( -  m, + m)], the metric (42) represents pseudo- 
planar symmetry or planar symmetry. In the following we attempt to find 
exact solutions of the field equations in Brans-Dicke theory corresponding 
to the metric (42) for a perfect fluid distribution. One can, however, use 
without the loss of generality the coordinate condition 

X = ' / + # + B  (43) 

The above coordinate condition enables us to write the field equations in a 
symmetric form. 

The field equations are 

Gl=-e-2XU=--kP-t-e-2X -t~ q)' q-Tt' (44) 
q~ 2~q~ 

~ ) -/~ ~ + (45) 

G~=-e-2X['Y"+I~"--U]=----kP+e-2X[2(d/2'd?'~b ~-)  --/8 -~--+ ~ J  (46) 

G4=-e-2X[/3"q-IL"-U]=~-~-t-e-2X[ 2(q)''2 'if' ~@l ~-- ) - ' / -~ -  + (47) 

where the primes indicate differentiation with respect to x and 

U=f i '7 '+  B'~'+7'/~' (48) 

The field equation (11) becomes 

Vqq~=e-2X~ ' ' -  3 +k-20~ ( - 0 + 3 p )  (49) 

Here we assume again that the equation of state for the fluid is 

P =eO (50) 

Now we attempt to solve this system of five equations and five unknown 
functions ~,, /z, /3, p, and q,. Subtracting equation (45) from (46) and 
integrating, we obtain 

(/x-/3) ' = D '  (51) 
q, 
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where D~ is a constant of integration. Subtracting 
applying (48) and (49) we obtain 

where 

(/3-7)"=h T - (/3- 7)'-+- 

(46) from (47) and 

(52) 

( l + e ) ( 3 + 2 w )  
h = -  3 e - 1  (53) 

Adding up (44) and (45) and applying (49) and (50) we have 

(•tl t 

(/3 + 7)" =j--~ -- - ( / 3 + 7 ) " ~  

where 

(54) 

2e(3+2o~) 
J =  3 e - 1  1 (55) 

Multiplying (52) by j and subtracting from (54) multiplied by h and 
integrating we have 

h(/3+7)'-j(/3-7)'= (56) 

where D 2 is a constant of integration. 
Equating (51) with (56) and integrating we finally have 

fl[ Dl( h - j  ) + D2] + TDl( h +j  ) -I~ D 2 - D 3 = 0  (57) 

where D 3 is a constant of integration. 
Then from (57) we prove that the exponentials/3, 7, and /~ must be 

linearly connected for a static perfect fluid having equation of state (50) in 
Brans-Dicke theory. 

In view of the Bianchi identity we have T;~7 = 0, which in turn yields 

p'= -(o+p)7' (58) 

Applying the equation of state (50) into (58) and integrating we have 

[ l + e  
exp t -- - ~ - 7 )  =DaP (59) 

where D 4 is a constant of integration. 
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Here is valid too the relation (26) which allows us to Write 

(~) l /C=eV (60) 

Equations (59) and (60) give 

( ~ )-O/c)[O+~)/~l=D4p (61) 

Substituting (61) for 0 into (49) and applying (50) we have 

e2a =~"  k (3e -  1) D4( (62) 

Differentiating (62) with respect to x and using (43), (51), and (56) in order 
to obtain the equation written in terms of , /and ~ and then using (60), we 
finally have 

q~q/" + mqr + n ~b" = 0 (63) 

where 

l [ 1 - - e  2 ( h + j )  ] 
m = -- (64) c e h-j  

2D2 n-- h-j D, (65) 

We can integrate once (63), giving 

m--1 t 2  t 4 ~ " + ~ 4  +n~  + D  5=0 (66) 

where D 5 is a constant of integration. We observe that if we have #(x)=fl(x)  
and apply (60) into (66), the differential equation that we obtain has the 
same form as that obtained for g00 by Banerjee and Bhattacharya (1979). 

Now considering the transformation 

1 
~b4~' = y(d~) (67) 

applied to (66) gives us 



326 Banerjee and Santos 

If n v e 0 we can make another transformation 

y( q~ )ep 1-('''- W2 = a ( a )  (69) 

~(m--  1)/2 

a=n (m-- 1)/2 (70) 

then (68) becomes 

da - v, ( - ~ ) ~ a 3  +a2 
(71) 

Lastly, assuming 

da 1 
dw wa(,0 (72) 

leads us to have (71) transformed into the differential equation 

2dZa Ds[ m-1  ~ ,~ 
w 7 + V t - T - I ~ - - .  (73) 

which has the general solution, 

a = t B'c~ -'}- B2W -q,  

~-w LB 1 +Bzlnw,  

for q2 = s -  �88 > 0  

for q2 = 1 - s > 0  

for s = �88 

(74) 

where 

D 5 m--1 
S ~ 

n 2 2 

and B 1 and B 2 are constants of integration. 
If n = 0  then the solution of (68) is 

[ 3 --m D5 21 -- 1/2 

y =  [ BI* - ( m - - l ) / 2  q~ ] , 

[ Btq~2 _ 2D5 ~2 in ~] -t/z, 

for  m r 1 

for m = 1 

(75) 
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In general it is not possible to go back from solutions (74) and (75) by 
applying the inverse transformations to obtain q~(x) because of the ap- 
pearance of transcendental equations but, nonetheless, it is possible to 
obtain particular solutions of (66) by choosing particular values for the 
constants which appear in the general solutions (74) and (75). 

6. A LEMMA AND A THEOREM FOR PLANAR SYMMETRY 

In this section we propose to state a theorem regarding plane symmet- 
ric solutions for a perfect fluid with an isothermal equation of state in 
Brans-Dicke theory. It may be said to be a generalization of the corre- 
sponding theorem proved by Bronnikov and Kovalchuk (1979) in Einstein's 
theory. 

We know that pseudoplanar symmetry plus mirror symmetry demand 
that 

p' =2, '=/~ '=f i '=0 (76) 

at some plane x - 0  without the loss of generality. In view of equations (51) 
and (56), condition (76) leads us to 

D 1 = D  2 =0 (77) 

Since DI=0,  we have # - f l '  or /z=/3+const, and by a suitable scale 
transformation of a coordinate, /~ can be made equal to t ,  which gives 
planar symmetry. This leads us to the following lemma: 

Lemma. Static systems with pseudoplanar plus mirror symmetry 
such that (T2=T33)matter are necessarily planarly symmetric in 
Brans-Dicke theory. 

This is a generalization of the corresponding result in Einstein's theory 
(Bronnikov and Kovalchuk, 1979). 

We observe that this lemma has been proved w h e n e v e r  (Z2)matter = 
(T33)matter and is without any interference of the equation of state (50). 

Further, in view of (43) one has 

X' =,/ '+/x '+/3'  (78) 

and with the help of (51) and (56), (78) becomes 

(79) 
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Differentiating (60) with respect to x and introducing it into (79) we finally 
have 

h , = l  q~' [ l _ 2 ( h +  j 2D2 1 (80) 

The condition (76) applied to (78) implies that ~ ' =  0 at x = 0; then with (77) 
and (80) we have q~'=0 at x = 0  because D I = D 2 = 0  in view of mirror 
symmetry. Considering the equation of state p=ep and (44) with the 
conditions obtained above we obtain that o = 0  at x = 0. Further, equation 
(49) leads us also to q~"= 0 at x = 0 and then by (66) it implies that at x = 0, 
D 5 = 0. Hence equation (66) reduces to 

q~q~" + -~---~ ff'2 = 0 (81) 

Equation (81) after integration may be written 

~= ( EIx + E2 ) 2~(re+l) (82) 

where E~ and E 2 are constants of integration. The condition i f '=  0 at x = 0 
imposes E l = 0 in (82), which gives a flat solution by (60). This leads us to 
the following theorem: 

Theorem. There cannot exist a static, planarly, or pseudoplanarly 
symmetric perfect fluid distribution with the equation of state 
p = ep with additional mirror symmetry in Brans-Dicke theory. 

This is a generalization of the corresponding theorem for perfect fluid in 
Einstein's theory of gravitation (Bronnikov and Kovalchuk, 1979). 

7. VACUUM BRANS-DICKE SOLUTIONS FOR 
CYLINDRICAL AND PLANAR SYMMETRY 

In the absence of any matter one should put p - -p - -0  in the field 
equations (44)-(47). The wave equation for the scalar field now reduces to 
[] r = 0, which in turn yields the solution for the scalar field ~, after a scale 
transformation of x coordinate in the form 

ep=x +c (83) 

The field equations (44)-(47) after putting p = p  = 0 finally yield the follow- 
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ing relations: 

i•)t f l " - # ' =  - ( f l ' - ~ ' ) ~ -  (84) 

v " - B  ''= (85) 

- f l " - V " =  ( f l ' + ' f ' ) ~  (86) 

Adding equations (85) and (86) and integrating, we obtain 

f l '=  D--LI (87) q~ 

Now introducing (87) into (85) and (84) and integrating we have 

v'=-~ and /~,= _~2 (88) 

where D1, D2, D 3 are all constants and ~ is given by (83). The equations (87) 
and (88) yield the complete solutions on simple integrations and suitable 
scale transformations of the coordinates x, ( and 7/as 

e/~ = ( x + c )  DI 

e r = ( x + c )  D2 (89) 

e . = ( x + c )  D3 

The solutions (89) satisfy all the Brans-Dicke field equations provided 

(D1D 2 -t'-D2D 3 + D 3 D , ) = o ~ / 2 - - ( D  , + D  2 +D3) 
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